Patients with Huntington's disease have a genetic mutation that triggers proteins to misfold and clump together in the brain. These clumps interfere with cell function and eventually lead to cell death. The new treatment leverages peptide-brush polymers, which act as a shield to prevent proteins from binding to one another. In studies in mice, the treatment successfully rescued neurons to reverse symptoms.
Read more …New Huntington's treatment prevents protein aggregation

A team of researchers has uncovered a groundbreaking mechanism in the formation of harmful protein aggregates that lead to neurodegenerative diseases such as Parkinson's Disease. The team, led by Professor Norifumi Shioda and Associate Professor Yasushi Yabuki, identified for the first time that unique RNA structures called G-quadruplexes (G4s) play a central role in promoting the aggregation of alpha-synuclein, a protein associated with neurodegeneration. By demonstrating that inhibiting G4 assembly could potentially prevent the onset of synucleinopathies, this discovery positions G4 as a promising target for early intervention in these diseases.
Read more …Scientists discover key to preventing neurodegeneration in Parkinson's and related disorders

A team led by researchers has discovered that a group of cells located in the skin and other areas of the body, called neural crest stem cells, are the source of reprogrammed neurons found by other researchers. Their findings refute the popular theory in cellular reprogramming that any developed cell can be induced to switch its identity to a completely unrelated cell type through the infusion of transcription factors.
Read more …Researchers challenge longstanding theories in cellular reprogramming

More Articles …