DNA-nanoparticle motors are exactly as they sound: tiny artificial motors that use the structures of DNA and RNA to propel motion by enzymatic RNA degradation. Essentially, chemical energy is converted into mechanical motion by biasing the Brownian motion. The DNA-nanoparticle motor uses the 'burnt-bridge' Brownian ratchet mechanism. In this type of movement, the motor is being propelled by the degradation (or 'burning') of the bonds (or 'bridges') it crosses along the substrate, essentially biasing its motion forward.
Read more …Can DNA-nanoparticle motors get up to speed with motor proteins?
The ability to alter proteins to refine control over binding affinity and specificity can create tailored therapeutics with reduced side effects, highly sensitive diagnostic tools, efficient biocatalysis, targeted drug delivery systems and sustainable bioremediation solutions. However, various approaches to such protein redesign have time-consuming drawbacks. Researchers now offer a simplified method they call ProteinReDiff that uses artificial intelligence to speed the redesign of ligand-binding proteins.
Read more …Simplified redesign of proteins to improve ligand binding